Preventing UDP Flooding Amplification Attacks
with Weak Authentication

Edoardo Biagioni
Department of Information and Computer Sciences
University of Hawai‘i at Manoa
esb@hawaii.edu

Abstract—An attacker wishing to flood a network with excess
amounts of network traffic may send UDP packets with a spoofed
IP source address corresponding to the target network. In many
cases servers then amplify the attack by replying to the target
network with more data than was sent by the attacker. This kind
of attack has been successful in the past using both DNS and
NTP servers.

The AllNet protocol has been designed to deliver data over
UDP as well as other media. Once an AllNet peer receives a
suitable UDP packet, it records the sender’s IP address and
begins to forward AllNet data to that address. This is a legitimate
form of traffic amplification, with one packet being used to
request that a limited number of other packets (currently 100)
be sent to this IP address.

To keep attackers from using AllNet peers for flooding ampli-
fication attacks, AllNet peers require potential contacts to return
a bitstring that was sent to that specific IP address. In this way,
legitimate contacts can receive and return the bitstring and start
receiving their data. In contrast, attackers who spoof their IP
address and do not receive the bitstring, are unable to direct
amplified traffic to other networks.

This very weak form of authentication, conceptually related
to TCP SYN cookies, only verifies that the packet comes from
a system that is able to receive packets sent to that specific IP
address. Such weak authentication is sufficient to prevent flooding
amplification attacks.

Index Terms—Flooding attack, DoS, SYN cookies, UDP.

I. INTRODUCTION AND RELATED WORK

In 2013 and 2014, a series of powerful Denial of Ser-
vice (DoS) attacks hit target networks belonging to the firm
CloudFlare. At its peak, the largest such attack was able to
deliver over 400Gbps to the target network [1]. These attacks
combined two major techniques:

« IP source address spoofing: the attackers sent packets
with an IP source address that matched the target of their
attack. Normally, IP source addresses record the sender
of the IP packet. In these attacks the IP source addresses
belonged not to the sender, but to the very target of the
attack. This caused third-party servers, unrelated to either
the attacker or the target, to send data to the target.

« Traffic amplification: the attackers sent the packets with
the spoofed IP source address to servers that replied to
small packets with larger amounts of data. This means
a small amount of traffic from the attacker generated
large amounts of traffic on the target network. Both DNS
servers [2] and NTP servers [1] were used (in different
attacks) to provide traffic amplification.

Because of the spoofed IP source address, the amplified data
was sent directly to the target, rather than the attacker. This
resulted in a denial of service to the target network.

This problem can be, and has been, solved by blocking
either of the two techniques used by attackers. In regards to
blocking spoofed IP source addresses, ISPs could in theory
stop packets with spoofed IP source addresses from being sent
outwards from their networks. This is called egress filtering.
For a variety of reasons that include lack of incentive and
the additional workload required, many ISPs do not perform
egress filtering.

The second technique used by attackers can be stopped by
designing servers and protocols that respond properly to legit-
imate UDP traffic but cannot be used for traffic amplification
on other networks [3]. In the case of legacy NTP servers,
for example, this is accomplished by disabling the monlist
command, or by replacing the server software with up-to-date
implementations of the NTP protocol [4].

We wish for AllNet peers to be unusable for flooding
amplification attacks, that is, to respond properly to UDP
packets from other legitimate AllNet programs but not support
data amplification for spoofed source addresses.

AlINet [5] [6] is a protocol for interpersonal communica-
tion that is designed to work over a variety of networking
technologies, including ad-hoc networks and UDP. Many such
technologies, including ad-hoc networks, cannot be leveraged
for the attacks described above, but UDP can. Instead, the
AllNet protocol itself must be resistant to such attacks.

The core of our technique, which can be applied to other
protocols besides AllNet, is to have each peer respond to an
unauthenticated UDP packet P by sending a small packet K,
a keepalive. K contains an unpredictable bitstring B which
is computed from two inputs: a randomly-selected bitstring
R known only to the sender, and the IP source address of the
original packet. This keepalive K is sent back to the IP source
address received as part of the original UDP packet P. If the
IP source address was not spoofed, K will likely reach the
sender of the original UDP packet, which can return B in a
subsequent packet.

If the source IP address I of this latest packet can be
combined with R to give B, then the sender is authenticated
as being able to receive packets addressed to I. This weak
authentication shows that the sender is reachable at the source
address I, and the IP source address can now added to

the internal data structures of the AllNet peer as a suitable
recipient for AllNet messages.

authanticator

initial packat

keepalive 0010111001

keepalive rezponze 0010111001
authenticated
AllNat mezzages

timna

Fig. 1. The basic exchange leading to weak authentication.

Once the weak authentication has completed, the AllNet
peer starts forwarding messages to the newly authenticated
peer, as shown in Figure 1.

In contrast, Figure 2 shows that an initial packet with
a spoofed IP source address leaves the attacker unable to
complete the weak authentication process.

authenticator

packet with zpoofed IF addrezs

keapalive 0010111001

X

tirna

Fig. 2. The response to a packet with a spoofed IP source address is not
delivered to the sender, which is then unable to issue the corresponding
keepalive response.

The contributions of this paper include:

« an efficient and generalizable method for only responding
to receivers that are able to confirm that they can receive
packets sent to a specific IP address.

« cryptographic techniques analogous to TCP Syn Cookies
to be able to properly respond to an arbitrary number of
spoofed packets, while requiring only a fixed amount of
state.

The remainder of this section continues discussion of related
work. Section II then describes several variants of this weak
authentication protocol. Section III considers the performance
of the weak authentication protocol, and SectionlV provides
concluding remarks.

A. SYN Cookies

SYN Cookies [7] are a technique introduced to blunt the
impact of syn-flooding Denial of Service attacks on TCP-based
servers. As in the flooding amplification attacks, syn-flooding
attacks use spoofed IP source addresses, but here the focus of
the attack is on getting the server to allocate large amounts of
memory for new connections that are never completed and will
never be useful. Such incomplete connections get in the way
of legitimate connections to the server. With SYN Cookies,
a server maintains only a fixed amount of total state for any
number of incomplete connections. This is accomplished by
encrypting the state of the incomplete connection in the initial
sequence number (ISN) sent in response to the TCP SYN
packet. In particular, the ISN carries part of a cryptographically
secure hash of the IP source address of the SYN packet and
some local state on the server. When the third packet in the
TCP three-way exchange (the ACK) is received by the server,
corresponding state is only allocated if the hash of the IP
address and the local state matches the received sequence
number.

As pointed out in the RFC, SYN cookies are an imperfect
mechanism. This is mostly because TCP has options, only
some of which can be captured with a SYN cookie. RFC
6013 [8], although now of only historical value, suggests
ways to accomodate arbitrary TCP options, but at the cost
of impacting other customary uses of TCP.

Similar to conventional TCP SYN Cookies, in AllNet a
keepalive only needs to be a secure hash of the IP source
address of a sender.

B. Security Model

We assume attackers wish to flood, i.e. send large amounts
of useless data, to a target network. For the attackers, it
is generally preferable if the data appears to originate from
computers that are not directly under the control of the
attackers.

We assume that it is undesirable for AllNet peers, and other
UDP servers, to participate in such an attack.

We also assume that IP packets with an IP destination
address in the target network are delivered only to that
IP destination address, and specifically not delivered to the
attackers. If attackers are able to snoop traffic addressed to the

target network, the authentication technique described in this
paper will not be effective. Fortunately, attackers who resort
to Denial of Service attack generally only do so if they are
unable to directly penetrate the target network.

Without knowing whether the IP source address is spoofed,
a server may confirm whether a packet is legitimate by sending
a response, then waiting for a confirmation that the response
was correctly received. Such a confirmation is evidence of
weak authentication demonstrating that the IP source address
can be used to reach a sender that is participating in the
protocol, but without giving any stronger information about
the sender of the packet.

II. DESIGN

This section describes a family of protocols to keep a server
or a peer from amplifying the effect of received UDP packets
with spoofed IP source addresses.

A. Basic Design

The first and simplest such protocol is to respond to an
incoming UDP packet from a new IP source address and port
number, by sending a keepalive packet to that same address
and port. The keepalive contains a cryptographic hash of the
IP source address and source port number, concatenated with
an internal random secret R known only to the server.

At this point, the new address is not yet (weakly) authen-
ticated. Since the address may have been spoofed, the server
does not allocate any state at this time, and specifically, records
neither the source address of the incoming packet, nor having
sent the keepalive.

A legitimate peer will respond with a keepalive response
containing the hash it was sent. When this is received and the
IP source address hashes to the same value as was received
in the keepalive response, the server can trust that the sender
(of the keepalive response) was able to receive the keepalive,
and therefore that the IP source address was not spoofed. The
server can then allocate state and begin to send data to the
address.

An attacker, on the other hand, will never see the keepalive
packet, and will therefore never be able to respond properly.
This is sufficient to prevent this server being used for flooding
amplification attacks.

Because UDP is unreliable, a program desiring to receive
data from a server may have to transmit the original packet
repeatedly, and may likewise have to retransmit the keepalive
response. The server, on the other hand, simply responds
to each incoming packet, and until the weak authentication
succeeds, keeps no information about the remote peer. This
means keepalives are idempotent, i.e. can be sent once or
multiple times with the same effect, and servers are stateless
until the peer is authenticated.

B. Variations on the Basic Design

If desired, the keepalives can be sent again after a certain
length of time, to confirm that packets sent to the given
IP address are still reaching a device participating in this

protocol. Since, unlike TCP, UDP does not reliably detect
errors, repeating the weak authentication protocol can confirm
that the remote peer still wishes to receive data from this
sender.

With or without such repeated authentication, the crypto-
graphic hash may include, as well as the IP source address
and the random internal secret, an internal counter that is
incremented periodically. Such a counter, in combination with
re-generating the random secret R on every reboot (and on
every overflow of the internal counter), prevents replay attacks.

This process of computing the bitstring B is illustrated in
Figure 3.

authenticator

received packet P

| ‘ IP source address | |

internal secret keepalive packet X

SECUre
hash

Fig. 3. Computing the secret bitstring that is sent in the keepalive packet.

III. DISCUSSION AND IMPLEMENTATION

The weak authentication presented in this paper is very
lightweight, requiring a single hash of readily available values
for every incoming packet from an unknown IP address and
UDP port. Since all hashes are computed on the server, the
hash algorithm need not be standardized and can be changed
at will.

As far as performance is concerned, if AllNet is imple-
mented without such weak authentication, sending a single
packet to a running AllNet peer is sufficient to start the
flow of AllNet data to the given IP source address. With
weak authentication, the time to start the flow of Allnet
data incurs additional latency of at least one round-trip time.
AllNet peers connect to the Internet on a scale of seconds to
years, and AllNet is fundamentally designed for interpersonal
communications, so one additional round-trip time for weak
authentication does not noticeably affect performance.

It is interesting to consider the consequences of repeated
authentication. In particular, suppose we limit the number of
data packets we send to each destination to a fixed number,
say 10. Then, each receiver should send a keepalive response
to the sender at least once every 10 data packets, and since
UDP packets are not delivered reliably, keepalives should
be sent more often. If the keepalive counter is incremented
for every 10 data packets sent, then the sender also has to
send new keepalives before 10 data packets are sent. In cases
where the traffic may be high, such as a new AllNet peer
joining the network, the round-trip latency might be more
than the time between updates of the keepalive counter. At
this point, both the sender and the receiver might have several
keepalives and keepalive responses in transit at the same time,
as shown in Figure 4. To support large amounts of traffic

without interruption in the data flow, an AllNet peer therefore
must be able to accept as correct older keepalive responses.
The algorithm discussed above, using counters, is suitable for
accepting delayed keepalive responses as long as we keep a
copy of the old random secret R_; and a record of the last
counter for which we have received a response.

authenticator

AllMat meszages
keepalive A §
keapalive
responze A
keapalive B
keapalive
keepalive C responze B
keepalive
rexponze C

lime

Fig. 4. Timeline showing when different packets are sent and received under
conditions of high traffic load and high latency.

We have completed an initial implementation in the AllNet
network of one of the protocols in Section II, specifically
the protocol which requires repeated authentication (currently
once every 10-100 packets — we are still evaluating the
implementation under different circumstances), but does not
keep a counter.

Since the generation of the bitstring B is a purely local
computation, selecting a new algorithm in the future, e.g. to
use a counter, can be done without changing the protocol. Such
repeated authentication with different values of the bitstring
B would have the advantage of limiting the amplification
available to an attacker that is able to capture one or a few,
but not all, of the keepalive packets.

In addition, since this protocol is very lightweight and
since in AllNet communication is between symmetric peers
(AllNet peers cannot be split into clients and servers), the
protocol can be used in both directions simultaneously. AlINet
keepalive packets therefore carry both a secret bitstring to be
sent back by the receiver of the keepalive packet, and also a
second secret bitstring to be used to authenticate the sender
of the keepalive packet. The presentation in Section II, which
distinguished keepalives from keepalive responses is useful for
exposition, but in practice combining the secret bitstring from
the sender in the same packet with the authenticating response
to the receiver reduces the overall number of packets sent and
the overhead of sending keepalives.

A. Evaluation

The preliminary implementation of this algorithm has been
used to gather statistics on the performance of this weak
authentication protocol under normal conditions, i.e. not under
attack.

In one case, 7,238 AllNet messages were captured in 500
seconds, for a rate of about 14.5 messages per second. Of
these messages, 163 or 2.3% were authenticating keepalives
with both sender and receiver authentication. Of these, 124
were sent by the host under test (100 on IPv4 and 24 on
IPv6) and 39 were received (9 on IPv4 and 30 on IPv6).

Because this is a preliminary implementation, it is likely
these numbers will change as further analysis drives improve-
ments in implementation. Once the software is fully functional,
we expect to test simulated attacks and verify that the weak
authentication prevents amplification of UDP flooding attacks
from spoofed IP source addresses.

B. Future Work: Denial of Service Attack on the AllNet
network

If an attacker wished to do a denial of service attack on the
AllNet network, the attacker could send a false authentication
keepalive to an AllNet host A. This fake keepalive would be
sent with the spoofed IP source address of a different AllNet
host B, carrying a random secret bitstring. This AllNet host
A will then use this secret bitstring to attempt to authenticate
itself with the AllNet host B at the spoofed source address.
Since the attacker’s secret bitstring will not authenticate A to
B, B may blacklist A and ignore its communication.

We have not yet studied this attack in detail, but our analysis
so far suggests that it would have little likelihood of success.
This is because host A gets keepalive packets both from
the attacker and from host B, and will respond correctly to
any keepalive packet sent by B, authenticating itself with
such responses. To really succeed, the attacker would have
to prevent the delivery of keepalive packets from B to A,
which is much harder than simply sending a few packets with
spoofed source address.

IV. CONCLUSIONS

We have presented a technique for preventing AllNet peers,
and similar servers that respond to incoming UDP packets,
from participating in flooding amplification attacks.

The technique is inspired by TCP SYN Cookies, but is
simpler because it doesn’t need to deal with the complexity
of the TCP connection establishment. Instead, the received IP
source address and an internal secret (and perhaps a counter)
are hashed to give a secret identifier which is sent to the new
peer. Further data is then transmitted only after the same secret
is returned — this returned secret indicates that a collaborating
peer indeed wishes to receive the data transmission at the given
IP address. The secret can be verified with the same hash
computation as was used to generate it in the first place, so that
only a fixed amount of state is required until the authentication
is complete, no matter how many actual or spoofed peers may
be trying to authenticate.

Because the AllNet layer does not rely on conventional
network addresses in delivering data [9], packets are forwarded
to a number of other AllNet peers in hopes that one of them
is the final destination, or will deliver the packet closer to
its final destination. This makes AllNet an ideal target for a
flooding amplification attack, since a single UDP packet may
request delivery of many AllNet packets to the spoofed IP
source address. The weak authentication protocol described
here is designed to prevent the use of AllNet peers for such
flooding amplification attacks.

As a final note, the algorithm is independent of the details
of the IP address, and can be used equally well with IPv4 and
IPv6 packets.

ACKNOWLEDGMENTS

The author wishes to thank the many individuals who
have contributed to the AllNet project over the years, and in
particular the recent and ongoing work by Tiago do Couto and
Henry Eck.

[1]

[2]
[3]
[4]
[5]

[6]

[7]

[8]
[9]

REFERENCES

S. Khandelwal, “Largest Ever 400Gbps DDoS attack hits Europe
uses NTP Amplification”, The Hacker News (thehackernews . com),
February 11, 2014.

M. Kumar, “World’s biggest DDoS attack that Almost Broke the Inter-
net”, The Hacker News (thehackernews.com), March 28, 2013.
Acunetix, “Preventing NTP Reflection DDOS Attacks Based on CVE-
2013-52117, acunetix.com, September 20th, 2014.

“NTP: DoS in monlist feature of ntpd (CVE-2013-5211),
rapid7.com, January 2, 2014.

E. Biagioni, “Ubiquitous Interpersonal Communication over Ad-Hoc
Networks and the Internet, at the 47th HICSS (Hawaii International
Conference on Systems Sciences), January 2014.

E. Biagioni, “A Ubiquitous, Infrastructure-Free Network for Interper-
sonal Communications”, Edoardo Biagioni, presented at the fourth
International Conference on Ubiquitous and Future Networks (ICUFN
2012), July 4-6, 2012, Phuket, Thailand.

W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations”, RFC
4987, August 2007.

W. Simpson, “TCP Cookie Transactions”, RFC 6013, January 2011.
E. Biagioni, “Mobility and Address Freedom in AllNet”, Ninth Interna-
tional Conference on Ubiquitous and Future Networks (ICUFN 2017),
July 4-7, 2017, Milan, Italy.

