A Network Testbed for Ad-Hoc Communications
using Raspberry Pi and 802.11

Edoardo Biagioni
University of Hawai’i at Manoa
esb@hawaii.edu

Abstract

We have built a testbed ad-hoc wireless network
to evaluate the AllNet ad-hoc networking protocol.
The testbed currently consists of 4 Raspberry Pi
Zero W embedded systems and a linux laptop, all
using 802.11/WiFi ad-hoc (IBSS) mode. The embedded
systems are placed in a line such that each is only able
to reliably communicate with one system before it and
one system after it in line.

The testbed displays phenomena that are observed in
real life, including:

e greater delay to reach devices that are farther
away

variability in the round-trip time to each device

e the current version of the AllNet protocol
(AllNet 3.2) successfully prioritizes messages. In
particular, trace messages, which are sent with
least priority, are rarely delivered if mainstream
data traffic from the AllNet network is allowed
onto the testbed.

* system connectivity varies over time, sometimes
allowing direct links between systems that are
normally unable to communicate

The paper includes practical considerations of
testbed deployment using the Raspberry Pi, and an
analysis of the performance of the AllNet protocol that is
driving improvements in the design and implementation.

1. Introduction

Wireless ad-hoc networks have been simulated
extensively over the past two decades. The simulation
often involves a degree of mobility, frequently within
a confined space — the “bouncing balls” model. When
real testbeds of wireless ad-hoc networks do appear in
the literature, they are typically expensive to deploy in
both time and resources.

The Raspberry Pi is a linux-capable ARM-based
device. It was originally designed for educational
purposes, but it is also suitable as the core of an
embedded system. This testbed uses the Raspbian
distribution of Linux, which is the default operating
system for the Raspberry Pi — in general, one could
use any of several distributions of different operating
systems. Many models of the Pi are available, including
the Raspberry Pi Zero, the simplest model of the
Raspberry Pi line. In February 2017, the Raspberry Pi
Zero W [6] upgraded the Raspberry Pi Zero to include
WiFi 802.11 and Bluetooth connectivity.

The price of the basic Raspberry Pi Zero W system
is $10 each. While this does not include a power supply
(nor a keyboard or display), any of the widely-available
5V micro-USB power sources can be used — the
Raspberry Pi Zero W is rated at 0.5W when idle,
and under 2W (400mA at 5V) under all conditions.
The keyboard and display are only needed for system
installation and maintenance, so a single keyboard and
display can be used for any number of Raspberry Pis.

The AllNet project [1] is designed for
communication among mobile devices over ad-hoc
networks as well as the Internet. Evaluating the
performance of AllNet over the Internet is relatively
simple: the AllNet project operates a number of virtual
machines which, together with some real systems,
self-organize into a Distributed Hash Table (e.g.,
see [11]) to support Internet-based communication for
AllNet. Since AllNet is designed to be frugal with
resources, one of the real systems is an old 32-bit Linux
laptop.

Evaluating the performance over ad-hoc networks
(rather than only the Internet) suggests the use of an
actual ad-hoc network. An evaluation network can be
built using actual mobile devices such as cellphones or
tablets, but such devices typically are more expensive
than the Raspberry Pi — or, in the case of older models,
have more limited availability. Further, such systems
have fewer interfaces, support a reduced selection of
operating systems, and may be more subject to theft if

deployed in unsecured locations.

For initial testing of the AllNet protocol over ad-hoc
networks, we have therefore built a network using one
Linux laptop and four Raspberry Pi Zero W devices.
The Raspberry Pis have been deployed in stationary
locations around our office building, whereas the laptop
offers mobility when desired. The AlINet messages are
transmitted over 802.11 Wi-Fi used in ad-hoc (“ibss™)
mode, which has has a range of about 30-40 meters in
this building'. The overall maximum distance between
the endpoints of this 4-hop network when each device
is placed so as to connect to only one device before it
and one device after it in line is approximately 100m
measured along the line.

Such deployment for testing is complicated by the
fact that connectivity between any two devices also
varies over time, a real-life phenomenon that is hard
to realistically reproduce in simulation. Because of
this variability, our four-hop network was occasionally a
three-hop network, a few times a two-hop network, and
sometimes just disconnected. Finding a deployment that
most reliably behaved as a four-hop network required
trial and error and the cooperation of many occupants of
our office building.

The contributions of this paper include:

e a description of the testbed, built using four
off-the-shelf Raspberry Pi Zero W and a Linux
laptop.

e results on the short- and medium-term
performance of a realistic low power ad-hoc
network under controlled conditions.

* motivations and design of the AllNet low-power
ad-hoc communications protocol, together
with measurements of its performance and
considerations about future improvements

2. Description of the Testbed

2.1. Hardware

The Raspberry Pi family of computers was designed for
educational purposes, to encourage individuals to learn
to apply technology to solve new problems. Different
versions of the Raspberry Pi vary in the connectivity
they support, with many having an Ethernet interface.
Differences between the Raspberry Pi Zero and earlier
versions of the Raspberry Pi indicate that the Pi Zero
was designed to provide a simpler and cheaper system.

'We and others have found that the range is greatest outdoors and
varies depending in part on the composition of intervening structures.
This paper does not describe direct measurements of transmission
range

The Raspberry Pi Zero W augments this simplicity with
aradio that supports 802.11 Wi-Fi and Bluetooth. These
systems are available for about $10 per system. Such a
system, like all Raspberry Pi systems, includes an SD
card for persistent storage.

An embedded system based on the Raspberry Pi
Zero W must add to this at least a 5V micro-USB
power supply. To support a user interface, an Raspberry
Pi Zero W must be further augmented with a display,
keyboard, and/or mouse.

The display and keyboard were used in this testbed
only for initial setup and configuration: while operating
as part of the testbed, each device had a power supply
but no other peripherals. Other testbeds may opt to
use a different version of the Raspberry Pi (or other
system) that provides 802.3 Ethernet as well as wireless
communications, particularly to provide an access and
debugging network. For our testbed, however, forgoing
the Ethernet gave us more flexibility in placing the units
in offices and other spaces that are in daily use and don’t
necessarily have convenient Ethernet ports nearby. Data
and logs that were not reported over the network were
stored on the SD card, which could from time to time be
removed and saved to a regular computer.

In essence, these Raspberry Pi Zero W devices are
used as one would use devices in the Internet of Things
(IoT). Unlike some IoT devices, for this testbed each
device is plugged into wall power rather than a battery.

2.2. Software

The operating system we run on the Raspberry Pi
Zero W is a version of Raspbian, a distribution of Linux
ported to the Raspberry Pi family of computers. Because
the development took place on standalone computers
rather than the Pi, for the Pi we selected a version of
Linux that did not provide a GUI, instead relying on
the command line to perform all necessary tasks. The
absence of a GUI saves both processing power and space
on the SD card.

Once cross-compiled for the ARM, AllNet runs
unmodified on the Raspberry Pi. The AllNet
command-line utilities are available, and are sufficient
for our testing. Two such utilities in particular must be
mentioned.

e AllNet trace [3], or trace, sends a special
AllNet message that, on systems that are not
heavily loaded, elicits a specific response (trace
reply) message. This can be used in a
manner analogous to ping, traceroute, or a
combination of both

records all

* allnet-sniffer messages

received and the time at which they were
received.

AllNet trace may be used for both performance
monitoring and network diagnostics. Specifically,
AllNet trace can be used to see whether any given
device in the network can be reached, and if so, what
intermediate devices the message visited in reaching the
target device. AllNet trace can also be used to elicit
a response from any device in the network. Because
AllNet traffic is prioritized and trace messages have the
lowest possible priority, trace and response messages
may be arbitrarily delayed or discarded if other traffic
is present. This low priority is a feature, preventing
the use of trace messages for denial of service, and
also guaranteeing that if trace messages are successfully
delivered, other traffic should also be delivered.

An additional program of note is xtime, which
sends out a time signal. If clocks on different devices are
synchronized, xt ime is useful for measuring network
latency. Conversely, if clocks are not synchronized, the
xt ime messages can be used to set the local clock to the
received time. Since the clock on the Raspberry Pi does
not track time when the Pi is depowered (on the next
boot, the clock is set to the most recently saved time),
in our testbed xtime can be used to set the time on
the Raspberry pi devices after they have been booted.
Since AllNet often takes several seconds to deliver a
message on the ad-hoc network, these “synchronized”
clocks may still be a few seconds late.

Each trace message may request that devices
forwarding the trace also record in the outgoing trace
their ID and the local time at which the message was
received. These IDs and timestamps are then returned
in the trace reply message. The AllNet trace program
only prints these timestamps if they are sane, that is, if
they fall between the local time when the original trace
was sent and the local time when the corresponding trace
reply was received.

2.3. Connectivity and Geometry

The testbed is deployed on one floor of an office building
which has a square floorplan, with the sides of the square
approximately 50m long.

Along the outside of the floor are offices and
stairwells and elevators — the elevators and stairwells
are important because they are in concrete shafts. In
contrast, apart from the occasional concrete pillar, the
walls between the offices are less dense than concrete.

Inwards of the offices are research spaces, which
have cubicle dividers, and then an open hallway all
around the floor.

‘ approx imately S0m |

levator shaft
concrete

inner hallway

; .

T I
T T T T L .
e T .
{(concrete) {concrete)

inner hallway

Figure 1. Approximate map showing the location of
units in this ad-hoc network testbed. Colored lines
indicate connectivity.

Inwards of the hallway are labs and service areas,
including some concrete walls.

The laptop from which all experiments are
performed (unit 1) is located in one corner of the
building. All the other units, unit 2 through unit 5, are
Raspberry Pi Zero W devices. Unit 2 is in a research
space about 5m from unit 1. Unit 3 is in an office at the
far end of the same side of the building. Unit 3 is often
not reachable from unit 1, but is reliably reachable from
unit 2.

Unit 4 is halfway down the next side of the building,
and unit 5 near the end of the same side, as shown
in Figure 1. Unit 4 can normally only directly
communicate with unit 3 and unit 5.

2.4. Maintenance

Because our testbed does not include a backup
maintenance network, accessing the devices in our
testbed requires physically removing the device, or at
least the SD card, to a location where it may be accessed.
A viable alternative (that we did not practice) would be
to instead bring the monitor and keyboard to the device.

The typical procedure when a software defect is
detected and fixed is to re-install all AllNet software
on each of the SD cards. Generally, the standard

AlINet source code is cross-compiled on a desktop
computer (Intel x86 architecture) using gnueabi to
produce ARM executables, then installed to each of the
Raspberry Pi Zero W devices by inserting the device’s
SD card into the computer and writing the files directly
to the SD card.

On the Raspberry Pi Zero W units, the allnet daemon
is started automatically by placing an appropriate script
in /etc/init.d. After re-installing the SD and
rebooting the unit, if desired, the local clocks on the
individual units can be reset using xt ime in one of two
ways: either from the laptop at one end of the testbed, or
by carrying the laptop into the range of each individual
unit. The latter delivers the xt ime messages over fewer
hops, and therefore results in more accurate local clocks.
Even with this more accurate setting, however, it is
normal for the Pi clocks to be off by a second or more.

Occasionally, the Raspberry Pi devices would stop
responding to trace messages. This is a problem that
many iOT devices can be expected to exhibit during
development. For this testbed, further testing is required
to determine whether the problem was with the devices
and/or operating systems, or with the AllNet software.
In each of these cases, rebooting resolved the problem.

3. Results

We have used the testbed to run AllNet traces from the
laptop to itself and to each of the Raspberry Pi devices.
Because AllNet is designed to carry interpersonal data,
particularly text messages, we are most interested in
end-to-end message latency rather than throughput —
because AllNet transmits each message multiple times
and, to save energy and bandwidth, frequently refrains
from transmitting, overall throughput is likely to be low,
and not likely to reflect the usefulness of AllNet.

A typical trace was performed on April 11th, 2018.
consisting of the following:

* first, 10 broadcast trace messages were sent over
the course of an hour (each 6 minutes apart).

 next, about 100 individual trace messages were
sent to each of the Raspberry Pi devices, each 8
minutes apart, for a total of about 13 hours and 20
minutes.

In the broadcast trace, 45 responses out of a possible
50 were received, with units 4 and 5 responding eight
times each and unit 3 responding 9 times. In the one case
that unit 3 failed to respond, units 4 and 5 responded,
probably meaning unit 3 received the trace message but
the response from unit 3 did not make it back to unit 1.
This case is identified as trace 2 in Figure 2.

1: b1 0 hop 0.001ls rtt 0.000s ts
1: b2 1 hop 6.968s rtt 2.648s ts
1: b3 2 hop 28.135s rtt 3.998s ts
1: b4 3 hop 35.465s rtt 26.860s ts
1: b5 4 hop 92.018s rtt 38.343s ts
2: bl 0 hop 0.003s rtt 0.002s ts
2: b2 1 hop 6.820s rtt 0.722s ts
2: b4 3 hop 109.502s rtt 21.794s ts
2: b5 4 hop 144.764s rtt 27.808s ts

Figure 2. Two broadcast traces on April 11th, 2018.
The unit addresses are b1l for unit 1, b2 for unit 2,
and so on. Note that unit 3 did not respond to the
second trace, but likely did forward the message to

unit 4, which reports being 3 hops away. Timestamps

(ts) are based on device-local time, which is accurate
for the device initiating the trace, and likely one or

more seconds behind for all the other devices.

5: b2 1 hop 1.951s rtt

5: b3 2 hop 11.890s rtt 2.770s ts
bl 0 hop 0.001s ts
b2 1 hop
b3 2 hop 24.085s ts
b4 3 hop 54.887s ts

5: b5 4 hop 236.619s rtt 61.543s ts

Figure 3. The response to message number 5 from a
more extended trace (also on April 11th) sending one
message to each of the Raspberry Pi units, and
requesting forwarding details for the message sent to
unit 5. Careful readers may note that no response
was received directly from unit 4, yet by studying the
response from unit 5 it is apparent that unit 4
received and forwarded the original trace message.

The individual traces were started at the same time,
but each delayed by a different amount: 478, 479, 480,
and 481 seconds each, respectively, for units 2, 3, 4,
and 5. In addition, trace messages to unit 5 requested
that the ID and local time of any unit forwarding the
trace message be recorded in the trace message itself.

In this more extended trace, part of which is shown in
Figure 3, 100% of the traces sent to unit 2 got a response,
98% of the traces sent to unit 3, 92% of the traces sent to
unit 4, and 23% of the traces sent to unit 5. These results
are summarized in Table 1.

Although the 23% response rate for unit 5 looks
dismal, this is for an implementation under test. Just
two days later, after some improvements to the code,
unit 5 had a 96% response rate and minimum/mean/max
response times of 14.3/56.9/156.5s, as shown in Table 2.

In this latter trace, 101 trace messages were sent to
unit 5, and 97 replies were received. Of these 97 traces

destination

unit 2
unit 3
unit 4
unit 5

response
rate
100%
98%
92%
23%

min
time
1.4s
2.0s
13.6s
28.6s

mean
time
6.9s
28.6s
52.6s
133.8s

max
time
24 8s
141.4s
160.3s
278.8s

Table 1. Result of sending about 100 trace
messages to the Raspberry Pi Zero W units at
8-minute intervals (April 11th, 2018).

destination

unit 2
unit 3
unit 4
unit 5

response
rate
100%
100%
96%
96%

min
time
0.8s
0.9s
5.8s
14.3s

mean
time
6.8s
17.9s
27.9s
56.9s

max
time
18.8s
82.9s
97.0s
155.5s

Table 2. Result of sending about 100 trace
messages to the Raspberry Pi Zero W units at
8-minute intervals (April 13th, 2018).

bl 0 hop

b2 1 hop

b3 2 hop

b4 3 hop
37: b5 4

Figure 4. Trace message 37 to unit 5 (April 13th,

hop 52.359s rtt

R s D O

.001s ts
.556s ts
.482s ts
.035s ts

2018). This kind of trace message requests that
addresses and (local) time be added to trace

messages as they are forwarded.

that resulted in replies, 46 took the expected 4-hop path
over all the units, 50 took a 3-hop path from unit 1
to unit 3, bypassing unit 2, and 1 took a 2-hop path
from unit 1 to unit 3 then directly to unit 5, bypassing
both units 2 and 4. Once an AllNet device receives a
trace message, it ignores any duplicate trace messages
received from its other neighbors, so the trace messages
accurately reflect the shortest path to each responding
destination.

In all these tests, the largest round-trip time recorded
was on February 2nd, 2018: unit 5 replied to unit 1
in over 583s. This test was unusual in that unit 1 had
been told to wait for as long as 600 seconds (10 minutes,
more than the usual 1-8 minutes) for a reply. However,
other tests in which replies were sought for up to 1,800
seconds (30 minutes) did not record replies taking any
longer than this.

4. Analysis

This testbed was built specifically to evaluate the
performance of AllNet in ad-hoc peer-to-peer mode.

Based on early work determining that the energy
cost of keeping the radio on, even in receive mode,
is a substantial contributor to the overall energy cost
of a minimal embedded device [12], the design of
the AllNet ad-hoc protocol was specifically aimed to
keep the radio off most of the time, while limiting
the latency to what is acceptable in the transmission
of interpersonal communications such as text-messages
intended for other people. The goals in the initial design
of this protocol were [4]:

* to limit the duty cycle (“on” time) of the radio
device to about 1%

* to forward text messages with reasonable latency

To satisfy these two goals, the protocol was designed
to have a 5 second cycle on ad-hoc networks (as opposed
to on the Internet, where AllNet messages are sent
immediately). At a randomly selected time within this
cycle, a device X sends an AllNet beacon message to
announce it is ready to receive, then listens for a beacon
interval of up to 50ms for another AllNet device to
respond.

If another AllNet device Y is listening and receives
a beacon and has messages to send, it waits for a time
uniformly selected from the beacon interval, then sends
a beacon reply. Once X receives a beacon reply in
response to its beacon message, it sends to Y a beacon
grant announcing how long it is willing to receive —
this time is also typically 50ms. At the default 802.11
ad-hoc data rate of 1Mb/s, 50ms can be used to send up
to approximately 6, 000 bytes.

Devices Z that overhear a beacon grant directed to
another device must keep quiet for the time the receiver
is willing to receive — this is similar to the 802.11
RTS/CTS mechanism.

Devices that have high-priority data to send, e.g.
devices with data generated locally, keep their interfaces
powered continuously so they have more opportunities
to send their data. Devices that are in energy saving
mode (because they have no high priority data to send,
or for any other reason) turn the interface on before
sending a beacon, then turn it off after the completion
of a beacon cycle, to satisfy the goal of limiting the
duty cycle. However, for the evaluation described in this
paper, all interfaces were placed in high-priority mode
and were never turned off. This results in a basic 5s
cycle for each device to send its beacon and receive
data from at least one neighboring device. Since the
transmission may occur at any time within the 5s cycle,
round-trip times are not necessarily multiples of Ss.

The bigger limitation is the 1% duty cycle of
transmissions. If there are many messages queued
for transmission, only the highest priority 6KB or so
will be sent in any Ss interval. Since any data traffic
has higher priority than and pre-empts trace messages,
with random forwarding any significant data traffic will
effectively prevent the transmission of trace messages.
This has been observed on several occasions, and led
us to isolating the test network from the wider AllNet
network for the purpose of these tests.

4.1. Analysis of a Re-implementation of
ad-hoc forwarding

In practice, trace messages lose out to data messages due
to the random forwarding model. A transmission model
in which message are forwarded to each device at most
once, which is a particular kind of gossip or epidemic
transmission model, allows high-priority traffic to be
sent first, but then also allow lower-priority traffic such
as trace messages to be sent, whereas with random
forwarding only the high-priority traffic really has a
chance to be sent.

This model has been implemented in an
experimental version of the AllNet software, which is
planned to be released as AllNet 3.3.

This experimental software does not (yet) use
beacons. Instead ad-hoc interfaces are treated like any
other interface, and messages are sent whenever they
are ready. This is analogous to turning off RTS/CTS for
802.11 devices, and also removes any reference to a 5s
cycle.

Part of a trace from AllNet 3.3 is shown in Figure 5.
Of 10 trace messages sent in this test, 9 were received

bl 0 hop
b2 1 hop
b3 2 hop
b4 3 hop
7: b5 4 hop 4.377s rtt

Figure 5. A trace message to unit 5 on
September 7th, 2018. Clocks were not synchronized,
so timestamps have been omitted.

within a 5-seconds timeout, with a minimum time of
0.4s, maximum time 4.4s and a mean of 2.0s.

The most interesting challenge of epidemic
forwarding is its statefulness — messages are to be
forwarded to a peer only if the peer has not already
received the message. This can be accomplished by
assigning a unique identifier to each device, or at the
time beacons are exchanged by having each device
report which messages it has already received before
receiving new messages. The second strategy requires
additional communication and processing at the time of
the beacon exchange, so for now we are implementing
the first strategy. Each device self-selects a random
ID, which is likely to be unique as long as the IDs
have enough bits (AllNet uses 128 bits). Each device
must then keep track of the IDs to which each cached
message has already been sent. The device should then
only forward cached messages that have not already
been sent to this ID.

To see how this works, consider device X sending
message M to device Y. After sending, device X
marks M as sent to Y, meaning it will never again
send M to Y 2. However, it is possible that Y was lost
in transit, in which case the message will only ever be
received by Y if Y receives it from a different host Z, or
if the original sender creates a new message M’ with the
same contents but enough difference that devices will
treat M’ as different from M. The latter should happen
automatically if a data message is not acknowledged
within a timeout, but has not yet been implemented in
this experimental version.

5. Related Work

The AllNet project has been ongoing since 2011, so
there are many publications related to different aspects
of the project. The most relevant to this work is the one
describing in detail the trace messages themselves [3].
The computation of social distance [2], used in

>The message cache in version 3.3 is designed to take a fixed
amount of space, which means that over time this information may
be forgotten and message M may actually be resent to Y some time
in the future. In what follows, we ignore this uncommon sequence of
events.

determining message priority, is designed (and as of
2018, not yet implemented) to take place by exchanging
pseudonymous information about individuals in one’s
social network. A recent overview of the project
can be found in a 2017 presentation [5]. The ideas
about gamifying AllNet to engage users, also not yet
implemented, are described in an early AllNet paper [7].

There are many other ad-hoc networks, both
proposed and implemented. Most notable in the news
has been Firechat [10], which is available for iOS
devices but does not provide security for messages.
Another notable deployed wireless ad-hoc network is
FabFi [8], which aims to build an infrastructure that
serves as an alternative to the Internet. Unlike AllNet,
these networks generally do not use the Internet for
message passing, even when available. Like AllNet,
Firechat has mobile devices forward messages, whereas
FabFi does not.

Gossip and epidemic protocols are also widespread
and in general these terms cover a variety of different
algorithms.

Finally, wireless ad-hoc networking testbeds
are abundant. Many of the latest efforts are
being sponsored by the U.S. National Science
Foundation’s “Platforms for Advanced Wireless
Research” program [9]. These are generally large-scale
efforts using dedicated hardware and designed for
general-purpose experimentation. In contrast, the
testbed described in this paper, particularly the use of
the Raspberry Pi Zero W devices, is inexpensive and
can be adapted for use by individual researchers.

6. Future Work and Conclusion

The experience here has been a driver to move from
the “priority-informed random forwarding” model of
earlier versions of AllNet (3.2.4 and prior) to the
“at-most-once” transmission model, as mentioned in
Section 4. This refactoring is in progress and should
be available in AllNet versions 3.3 and above.

Random forwarding (whether or not informed by
priority) is stateless, since data is forwarded based
on current connectivity rather than past history. In
contrast, the the ‘“at-most-once” transmission model
requires tracking whether a currently connected device
has received a specific message before. This generally
requires more storage, but storage, in the range of
several megabytes, is one resource that at this time
even resource-starved mobile devices seem to have in
abundance.

We also look forward to experimenting with the
Bluetooth capabilities of the Raspberry Pi Zero W
devices.

To summarize our experience in this paper, we have

found that Raspberry Pi Zero W devices can be quite
useful to researchers. Even in this age of inexpensive
cloud computing, which provide researchers access to
large numbers of virtual devices, the ability to build
a real wireless testbed out of inexpensive and reliable
devices with all the WiFi and Bluetooth capability that
Linux supports has value for the practical evaluation of
research in wireless ad-hoc networks.

References

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

Biagioni, “Ubiquitous Interpersonal Communication
over Ad-Hoc Networks and the Internet”, at the 47th
HICSS (Hawaii International Conference on Systems
Sciences), in January 2014.

Biagioni, “Distributed Anonymous Computation of
Social Distance”, CCNC 2016, the 13th Annual IEEE
Consumer Communications and Networking
Conference, 9-12 January 2016, Las Vegas.

Biagioni, “A Diagnostic Tool for Ad-Hoc and
Delay-Tolerant Networks”, 42nd conference on Local
Computer Networks (LCN 2017), October 8-12, 2017,
Singapore.

Biagioni, “Ubiquitous Interpersonal Communication
over Ad-Hoc Networks and the Internet”. Unpublished,
2013. Available from http://alnt.org/2013.sigcomm.pdf

Biagioni, “AllNet: ubiquitous interpersonal
communications”, presentation from September 18th,
2017. http://alnt.org/cis-talk.pdf

Brodkin, “New $10 Raspberry Pi Zero comes with
Wi-Fi and Bluetooth”, Ars Technica, February 28, 2017.
https://arstechnica.com/information-technology/2017/02/new-10-raspberry-g

C. Desiato and E. Biagioni, “Sharing Networking
Resources to Create a Pervasive Infrastructure”, Ninth
Int’l Conference on Technology, Knowledge, and
Society, 13-14 January 2013, Vancouver, Canada.

Matthew Humphries, “FabFi: an open source wireless
network for $60 per node”, geek.com, June 27 2011.
https://www.geek.com/chips/fabfi-an-open-source-wireless-network-for-60-f

National Science Foundation, “Platforms for Advanced
Wireless Research, PAWR”,
https://advancedwireless.org/ (retrieved June 2018)

Tom Simonite, “The Latest Chat App for iPhone Needs
No Internet Connection”, Technology Review, March
28,2014.

Stoica, Morris, Karger, Kaashoek, and Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for
Internet applications”, ACM SigCOMM 2001.

Lin Zhong, “Power Consumption by Wireless
Communication”, lecture notes, 2011. Available from
http://www.ruf.rice.edu/"mobile/elec518/lectures/3-wireless.pdf

