AllNet: ubiquitous interpersonal communications

Edoardo Biagioni Information and Computer Sciences University of Hawai'i at Mānoa

Limitations of cellular service

- Not always available
- Sometimes too expensive
- One size may not fit all
- Inefficient for communication among nearby mobile devices

Free improvement (no additional hardware needed)

- Ad-hoc communication between nearby devices
 - wifi, bluetooth, opportunistic networking
- Forwarded by others:
 - messages are seen by many, so encryption is required
 - key exchange authenticated by interpersonal communications
 - prioritize messages to and from friends
 - as long as we can recognize our friends' messages
- Internet when available
 - Distributed Hash Table is decentralized, resilient

about this talk

• Introduction

- slides 1-4

• Challenges: technical, security, human

- slides 5-11

Project contributions

- slides 12-15

• Future work

- slide 16

Technical Challenges

- Low-overhead universal P2P communication is not widely supported on mobile devices
 - Android blocks Wifi P2P (ad-hoc) mode unless rooted
 - iOS has true P2P, that only works with other iOS devices!
 - Bluetooth takes time to establish connections
 - other mechanisms require extra hardware or are experimental
 - working on the fringes, so properties are often buggy or not well documented
- Reliable communicaton over ad-hoc networks
 - don't want to send all the time (that would be spam)
 - but messages are important, so must be sent
- Picking appropriate levels and details of security
 - design, operations

Security Challenges

- Security and usability often conflict
- goal: secure and usable in a high-school setting
- assume that the device is secure (often not a correct assumption)
- choose sensible defaults, give users options
 - save messages on the device, let users export them (importing is more challenging)
 - save keys on the device
 - not very secure
 - maybe provide forward secrecy?

Security Example

- Each device generates its own keys
- to exchange keys, you and I have to authenticate the keys with a secret string
 - example: DFDLKKCPAFGBYL
 - could also use QR codes or other methods
- once keys are exchanged, encrypt everything
- equivalent to https?
 - better: no central points of failure
 - worse: not completely automatic

Network Effect

- I benefit if you use the same communication technology as I do
- I benefit more if everyone uses the same communication technology
 - example: telephones
 - mobile phones are different from landlines
 - but the two are compatible
 - making adoption easier

Network Effect: P2P

- ad-hoc P2P communication depends on others carrying my messages
 - may I borrow your phone?
 - automatically and without having to ask?
- good if everyone uses it
 - especially when the infrastructure is not available
 - e.g. in emergencies
 - e.g. when I can't afford the infrastructure

P2P costs

- my message sits on your device
 - takes up space
- your device must forward my messages
 - ok, doesn't have to, but then the network breaks
 - costs you battery, bandwidth, perhaps \$\$

Automatic Prioritization

- my messages come first
- then my friends' messages
- then maybe their friends' messages?
- and finally, background messages
 - each time, with fewer resources
 - and likely, with more messages!

Contributions so far

- automatic and convenient security
 - authentication relies on personal connection
- improve service in the local area
- anonymous computation of social distance
- ack is hash of message ID
 - recognizable by all, only destination can issue
- addresses suitable for mobility, wireless networks
- priority forwarding with resource management

Anonymous Social Networks

- Each device has a pseudonym P (or more than one)
- I give my friends the modified pseudonym P' for each of my friends
 - easy to compute P' from P, but not P from P'
 - for example, P' is a prefix of P, or a hash of P
- I also give them P" for my friends' friends (f²)
- if a stranger gives me P" for their f and f², I can compute their social distance if it is less than 4
- if so, I may be willing to prioritize their messages

Status

- works well on Linux
 - implementations for iOS, MacOS, Windows
 - Android implementation in progress
 - anonymous social network is not implemented
- supports Wifi (ad-hoc mode) and Internet

Summary

Device-to-Device communication can be useful for interpersonal communication Re-examine assumptions from wired networks Encryption, addressing, limited broadcasts

Future projects related to AllNet

- http://alnt.org/
 - continuing design and software development
- motivating participation:
 - the connectivity game
 - monthly awards for "the most helpful device"
 - how could people cheat?
- anonymous social networks
 - we can tell which friends we have in common
 - maybe not always good?
 - how much information is it OK to share?