Connecting the Unconnected free is good

Edoardo Biagioni University of Hawaii at Manoa Information and Computer Sciences

AllNet project

Ad-Hoc Networking

- old idea (1990s)
- Alice's device talks to Bob's device talks to Charlie's device talks to
- until we build a useful network

In 2017 we all carry two-way radios!!!!

Conventional vs. Free

- can mobilize large capital investments
- incentives for reliability
- central planning
- fixed infrastructure
- very successful
- follows money

- can serve the underserved
- incentives to contribute
- well-understood need
- flexible deployment
- some success
- follows people

problems with free

relies on network effect

- works best when many people use it
- "tragedy of the commons"
 - most people prefer to use more, contribute less
- no large investments
 - hard to build infrastructure
 - cannot use for long-distance high-volume communications
- all responsible, nobody responsible
 - can others see my messages?

advantages of free

- free!
- decentralized decision-making
 - end-users make decisions
 - end-to-end architecture
- portable infrastructure
 - end-users bring devices where needed

Devices follow People

- still works when infrastructure is down
- as long as devices can be powered

supports emergency communication

Ad-Hoc and Delay Tolerant

- messages are stored and forwarded by intermediate devices
- forwarding may be immediate or delayed
- devices may carry messages: sneakernet
 - inefficient multiple message retransmissions
 - but acceptable for low-rate communication: text messages!
- infrastructure not required

P2P networking Real-Life challenges

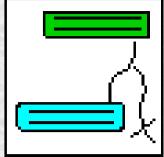
- WiFi has an ad-hoc mode
 - but ad-hoc Wlfi not supported on iOS or Android
 - unless the device is rooted!
- so bluetooth where possible, other technologies in the future
- can use WiFi network not connected to the Internet
 - local infrastructure

Leveraging the Internet

- needs to work well without the Internet
- needs to work better when there is Internet!

- distributed implementation: internet-connected devices self-organize so my device knows where it can pick up its messages
 - similar to email, but self-organizing
 - Distributed Hash Table

AllNet status


- works well on Linux, including ad-hoc WiFi mode and Internet
- works on Internetconnected Apple and Windows desktops

http://alnt.org/

 works on iOS, including multipeer (peer-to-peer) and Internet

allnet-xchat

 preliminary implementation for Android

Challenges and Solutions

- distributed identification
- anyone may snoop
- resource depletion
 - battery
 - storage
 - bandwidth
- unreliable

- use a shared secret for initial ID
- encrypt messages
- prioritize traffic
 - my own first
 - my friends' next
 - then others'
- meaningful packets

Experience

- Internet messaging used daily over the Internet
 - by a small group
- so far, P2P mostly used for testing
- mobile devices run apps for short periods only
 - fetch data when run, not when convenient

mostly delivers messages reliably

in a distributed setting it is easy to create test accounts!

😢 🕒 💷 xchat - AllNet Java UI
Contacts New Contact Edit Contact More
0 contacts with new messages 13 contacts total
edo-on-jolla 2017/12/19 05:33:23
edo-on-maru 2017/10/04 08:22:18
test-group 2017/10/04 08:22:18
edo-on-ipad 2017/06/19 02:14:45
edo-on-mac 2017/06/10 02:43:22
test-group2 2017/06/10 02:43:22

Contact Creation

- distributed
 - I could claim to be Justin Bieber!
- we meet through a secret known only to us
- secret chosen by system
- secret only used once
 - ok if compromised after key exchange

AllNet Technology

- messages encrypted, authenticated
- sender-based message prioritization
- self-selected, non-unique, location-independent device identifiers ("addresses")
- anonymous acks
- distributed, anonymous social network
- mobile differs from wired networking!

Anonymous Acks 1/2

- each personal message has an unencrypted header, or "envelope", and encrypted content
- unencrypted header includes a message ID
- encrypted content includes the ack

Anonymous Acks 2/2

- (encrypted) ack hashes to (unencrypted) message ID
- anyone receiving ack hashes it, to compare it to received message IDs
- only receiver can ack
- anyone can match ack to message

Incentives to Contribute

- could have competitive games for "who contributes more to others' transmissions"
 - a distributed currency
- games could leverage the anonymous social network
 - the network effect used to incentivize
- must be free to choose how much to contribute
- default is to contribute at least a little

- e.g. 1%

Future Work 2018/01/01

- better evaluate multihop and delayed ad-hoc
- collaboration with Pacific Disaster Center
- complete Android implementation
- add ad-hoc wherever and however possible
- cellphone walkie-talkie

free is good

- but needs minimal support from OS authors
 - Android is Linux, but no API for P2P wifi
 - iOS Multipeer is restricted to iOS devices
- distributed decision-making
- network follows people

http://alnt.org/